Positive Semi-definiteness of Generalized Anti-circulant Tensors

نویسندگان

  • GUOYIN LI
  • LIQUN QI
  • QUN WANG
چکیده

Anti-circulant tensors have applications in exponential data fitting. They are special Hankel tensors. In this paper, we extend the definition of anti-circulant tensors to generalized anticirculant tensors by introducing a circulant index r such that the entries of the generating vector of a Hankel tensor are circulant with module r. In the special case when r=n, where n is the dimension of the Hankel tensor, the generalized anticirculant tensor reduces to the anti-circulant tensor. Hence, generalized anti-circulant tensors are still special Hankel tensors. For the cases that GCD(m,r)=1, GCD(m,r)=2 and some other cases, including the matrix case that m=2, we give necessary and sufficient conditions for positive semi-definiteness of even order generalized anti-circulant tensors, and show that in these cases, they are sum of squares tensors. This shows that, in these cases, there are no PNS (positive semidefinite tensors which are not sum of squares) Hankel tensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further results on Cauchy tensors and Hankel tensors

In this article, we present various new results on Cauchy tensors and Hankel tensors. We first introduce the concept of generalized Cauchy tensors which extends Cauchy tensors in the current literature, and provide several conditions characterizing positive semi-definiteness of generalized Cauchy tensors with nonzero entries. Furthermore, we prove that all even order generalized Cauchy tensorsw...

متن کامل

p-Norm SDD tensors and eigenvalue localization

We present a new class of nonsingular tensors (p-norm strictly diagonally dominant tensors), which is a subclass of strongH-tensors. As applications of the results, we give a new eigenvalue inclusion set, which is tighter than those provided by Li et al. (Linear Multilinear Algebra 64:727-736, 2016) in some case. Based on this set, we give a checkable sufficient condition for the positive (semi...

متن کامل

2 0 1 2 M - tensors and The Positive Definiteness of a Multivariate Form

We study M-tensors and various properties of M-tensors are given. Specially, we show that the smallest real eigenvalue of M-tensor is positive corresponding to a nonnegative eigenvector. We propose an algorithm to find the smallest positive eigenvalue and then apply the property to study the positive definiteness of a multivariate form.

متن کامل

Higher Order Positive Semidefinite Diffusion Tensor Imaging

Due to the well-known limitations of diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is used to characterize non-Gaussian diffusion processes. One approach to analyze HARDI data is to model the apparent diffusion coefficient (ADC) with higher order diffusion tensors (HODT). The diffusivity function is positive semi-definite. In the literature, some methods have...

متن کامل

Fast Hankel tensor-vector product and its application to exponential data fitting

This paper is contributed to a fast algorithm for Hankel tensor–vector products. First, we explain the necessity of fast algorithms for Hankel and block Hankel tensor–vector products by sketching the algorithm for both one-dimensional and multi-dimensional exponential data fitting. For proposing the fast algorithm, we define and investigate a special class of Hankel tensors that can be diagonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015